Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503948

RESUMO

NEK2 is a serine/threonine protein kinase that is involved in regulating the progression of various tumors. Our previous studies have found that NEK2 is highly expressed in gastric cancer and suggests that patients have a worse prognosis. However, its role and mechanism in gastric cancer are only poorly studied. In this study, we established a model of ferroptosis induced by RSL3 or Erastin in AGS cells in vitro, and konckdown NEK2, HOMX1, Nrf2 by siRNA. The assay kit was used to analyzed cell viability, MDA levels, GSH and GSSG content, and FeRhoNox™-1 fluorescent probe, BODIPY™ 581/591 C11 lipid oxidation probe, CM-H2DCFDA fluorescent probe were used to detected intracellular Fe2+, lipid peroxidation, and ROS levels, respectively. Calcein-AM/PI staining was used to detect the ratio of live and dead cells, qRT-PCR and Western blot were used to identify the mRNA and protein levels of genes in cells, immunofluorescence staining was used to analyze the localization of Nrf2 in cells, RNA-seq was used to analyze changes in mRNA expression profile, and combined with the FerrDb database, ferroptosis-related molecules were screened to elucidate the impact of NEK2 on the sensitivity of gastric cancer cells to ferroptosis. We found that inhibition of NEK2 could enhance the sensitivity of gastric cancer cells to RSL3 and Erastin-induced ferroptosis, which was reflected in the combination of inhibition of NEK2 and ferroptosis induction compared with ferroptosis induction alone: cell viability and GSH level were further decreased, while the proportion of dead cells, Fe2+ level, ROS level, lipid oxidation level, MDA level, GSSG level and GSSG/GSH ratio were further increased. Mechanism studies have found that inhibiting NEK2 could promote the expression of HMOX1, a gene related to ferroptosis, and enhance the sensitivity of gastric cancer cells to ferroptosis by increasing HMOX1. Further mechanism studies have found that inhibiting NEK2 could promote the ubiquitination and proteasome degradation of Keap1, increase the level of Nrf2 in the nucleus, and thus promote the expression of HMOX1. This study confirmed that NEK2 can regulate HMOX1 expression through Keap1/Nrf2 signal, and then affect the sensitivity of gastric cancer cells to ferroptosis, enriching the role and mechanism of NEK2 in gastric cancer.

2.
Front Surg ; 9: 986696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439539

RESUMO

Background: The clinicopathological features and surgical treatment strategies of Borrmann type IV gastric cancer (GC) remain controversial. Peritoneal metastasis is the most common recurrence pattern in patients with Borrmann type IV GC. Methods: Among 2026 gastric cancer between January 2009 and August 2019, 159 cases of Borrmann type IV GC were included in this study (7.8%). We retrospectively analyzed the clinicopathological characteristics and prognosis of these patients. Univariate and multivariate Cox proportional hazards were applied to identify independent prognostic factors. Predictors related to peritoneal metastasis of type IV GC were analyzed by multivariate Cox regression analysis. Results: Borrmann type IV gastric cancer was associated with more advanced clinicopathological features at diagnosis than the other Borrmann type GC. Of the 159 patients with Borrmann type IV GC, the median OS was 23 months. The number of patients with peritoneal metastasis was 43, accounted for 27.0% of all the patients and 87.8% of the patients with distant metastasis. Multivariate analyses revealed lymph node metastasis to be independent prognostic factor for survival in Borrmann type IV GC patients. pN3b and tumor size > 50 mm showed to be risk factors for peritoneal metastasis. Conclusions: Borrmann type IV GC is an important independent prognostic factor. pN3b is an independent prognostic factor and a predictor of peritoneal metastasis in patients with Borrmann type IV GC.

3.
Exp Ther Med ; 22(2): 798, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34093754

RESUMO

Gastric cancer (GC) poses a serious threat to human health worldwide. Serine/arginine rich splicing factor 1 (SRSF1) has been reported to serve regulatory roles during the tumorigenesis of GC. In addition, the macrophage stimulating 1 receptor (MST1R) signaling pathway was found to participate in the progression of GC. However, the association between MST1R and SRSF1 in the tumorigenesis of GC remains unclear. The expression levels of MST1R and the recepteur d'origine nantais (RON) Δ160 splicing variant were analyzed in cells using western blotting and immunofluorescence staining. Co-immunoprecipitation assays were used to investigate the interaction between SRSF1 and MST1R. A Cell Counting Kit-8 assay was performed to analyze cell viability. Flow cytometry and Transwell assays were used to determine cell apoptosis and invasiveness levels. The potential interaction between SFSR1 and long non-coding RNAs (lncRNAs) was investigated with an online bioinformatics tool. The findings of the present study revealed that the expression levels of MST1R and RON Δ160 were significantly upregulated in GC Kato III cells. SRSF1 was found to be regulated by the lncRNA FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR). The knockdown of SRSF1 or FENDRR downregulated the expression levels of MST1R in Kato III cells. In addition, the expression levels of RON Δ160 were markedly downregulated in Kato III cells following the knockdown of FENDRR. Meanwhile, SRSF1 directly bound to MST1R, while this phenomenon was partially reversed by FENDRR short interfering RNA. FENDRR could interact with SRSF1 in Kato III cells and the knockdown of FENDRR also induced the apoptosis of GC cells. In conclusion, the findings of the present study suggested that the lncRNA FENDRR may function as an oncogene during the progression of GC by regulating alternative splicing of MST1R and SRSF1 expression levels. lncRNA FENDRR may serve as a potential marker for the diagnosis or target for the treatment of GC.

4.
Onco Targets Ther ; 13: 12723-12735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328743

RESUMO

BACKGROUND: Gastric cancer is one of the most malignant tumors all over the world. It has been reported that proteins play key roles during the tumorigenesis of gastric cancer. To identify novel potential targets for gastric cancer, differential expressed proteins between gastric cancer and adjacent normal tissues were analyzed with proteomics and bioinformatics tool. METHODS: The differentially expressed proteins between gastric cancer and adjacent normal tissues were analyzed by Omicsbean (multi-omics data analysis tool). Cell viability was tested by CCK-8 assay. Flow cytometry was used to measure cell apoptosis and cycle. Transwell assay was used to test cell migration and invasion. Gene and protein expressions were detected by RT-qPCR, immunohistochemistry and Western blot, respectively. RESULTS: MAGOH and MAGOHB were found to be notably upregulated in gastric cancer tissues compared with that in normal tissues. Knockdown of MAGOH significantly inhibited the proliferation of gastric cancer cells via inducing the cell apoptosis. In addition, MAGOH knockdown induced G2 phase arrest in gastric cancer cells. Moreover, MAGOH knockdown notably inhibited migration and invasion of gastric cancer cells. Importantly, double knockdown of MAGOH and MAGOHB exhibited much better anti-tumor effects on gastric cancer compared with alone treatment. Finally, double knockdown of MAGOH and MAGOHB mediated the tumorigenesis of gastric cancer via regulation of RAF/MEK/ERK signaling. CONCLUSION: MAGOH knockdown inhibited the tumorigenesis of gastric cancer via mediation of b-RAF/MEK/ERK signaling, and double knockdown of MAGOH and MAGOHB exhibited much better anti-tumor effects. This finding might provide us a new strategy for the treatment of gastric cancer.

5.
Chin Med J (Engl) ; 133(9): 1099-1108, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32265426

RESUMO

Nearly 70% of breast cancer (BC) is hormone-receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, and endocrine therapy is the mainstay of treatment for this subtype. However, intrinsic or acquired endocrine resistance can occur during the endocrine treatment. Based on insights of endocrine resistance mechanisms, a number of targeted therapies have been and continue to be developed. With regard to HR-positive, HER2-negative advanced BC, aromatase inhibitor (AI) is superior to tamoxifen, and fulvestrant is a better option for patients previously exposed to endocrine therapy. Targeted drugs, such as cyclin-dependent kinases (CDK) 4/6 inhibitors, mammalian target of rapamycin (mTOR) inhibitors, phosphoinositide-3-kinase (PI3K) inhibitors, and histone deacetylase (HDAC) inhibitors, play a significant role in the present and show a promising future. With the application of CDK4/6 inhibitors becoming common, mechanisms of acquired resistance to them should also be taken into consideration.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Fulvestranto , Humanos , Receptor ErbB-2/genética , Receptores de Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...